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Big Earth Data in Support of the Sustainable Development Goals (2021)

Foreword

In 2015, the United Nations adopted the 2030 Agenda for
Sustainable Development, which includes 17 Sustainable
Development Goals (SDGs) to be achieved by 2030.
The SDGs are about achieving economic, social and
environmental sustainability on a global scale. Since the
launch of the 2030 Agenda, China has worked to promote
the SDGs while embracing a new philosophy of innovative,
coordinated, green, open and shared development, achieving
impressive results in eradicating absolute poverty, addressing
climate change, improving ecological environment,
promoting public health service and ensuring food security.
Steady progress has been made in achieving high-quality
development. At the same time, China has actively engaged
in and promoted international development cooperation and
provided reliable public goods for the realization of SDGs
across the world.

Experience of the past six years, however, has shown that
there remain a number of major challenges to scientifically
evaluating the implementation of the 2030 Agenda, the most
serious ones being the lack of data, the incompleteness of the
indicator system, and the gap in capacity of having and using
data as a result of development disparity. As China's national
scientific institute, the Chinese Academy of Sciences (CAS)
has long been devoted to promoting SDGs through big data.
In recent years, CAS has been working with universities,
research institutes and enterprises at home and abroad to
explore the application of combined new technologies such
as cloud computing, artificial intelligence, space technology
and network communication technology to improving the
evaluation system for SDGs, developing public data products

and informing decision-making.

Chinese President Xi Jinping announced on September 22,
2020 at the 75th session of the UN General Assembly that
China will establish an International Research Center of
Big Data for Sustainable Development Goals (CBAS), to
provide new impetus for the implementation of the 2030
Agenda. Subsequently, CBAS was officially launched in
Beijing on September 6, 2021. President Xi Jinping sent a
congratulatory letter and UN Secretary-General Anténio
Guterres delivered a video message to congratulate on the
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establishment of the Center. I believe that CBAS will use big
data to give support to the sustainable development of China
and the world.

In recent years, CAS has, based on its advantages, done
demonstration studies on monitoring and evaluation of
indicators for the goals of zero hunger, clean water and
sanitation, sustainable cities and communities, climate action,
life below water and life on land, and issued annual report on
Big Earth Data in Support of the Sustainable Development
Goals. The 2021 report continues to focus on the practical
scenarios for these SDGs' realization, and presents research
results including single indicator progress evaluation and
integrated multi-indicator evaluation. These results provide
stronger scientific basis for understanding the dynamic trends
of SDG indicators and analyzing the problems hindering
sustainable development and they can inform decision on
SDG realization in different scales and regions.

2021 marks the 50th anniversary of the restoration of the
People's Republic of China's lawful seat in the United
Nations. This CAS report is part of China's sustained
contribution in the form of science and technology to the
implementation of the 2030 Agenda. CAS will further
strengthen the collaborations with international counterparts
to address new challenges to sustainable development
through science, technology and innovation.

s

Hou Jianguo
President, Chinese Academy of Sciences



Preface

Preface

The COVID-19 pandemic has brought unprecedented
challenges to the implementation of the 2030 Agenda for
Sustainable Development across the world, affecting, to
a large extent, the existing achievements, and resulting in
stagnation or even regression. Recognizing the important role
scientific and technological innovation can play in promoting
economic and social development, the United Nations
established in 2015 the Technology Facilitation Mechanism
for SDGs. In the Sustainable Development Goals Report
2020, United Nations Secretary-General Antonio Guterres
called for a coordinated and comprehensive international
response and recovery effort, based on sound data and
science and guided by the Sustainable Development Goals.

More effective ways need to be explored to address the
data challenge facing SDGs. Thanks to the development of
science and technology, the global data volume is growing
exponentially. Advances in computing and data technologies
have made real-time processing and analysis of big data a
reality, while new types of data combined with traditional
data, such as statistical and survey data, can create more
detailed, timely high-quality information. Big Earth Data
technology, through its extensive use and further innovation,
can be an effective way to address the data divide and the

lack of information and tools for sustainable development.

The International Research Center of Big Data for
Sustainable Development Goals, built on the strength of the
Chinese Academy of Sciences, will use big data to support
the SDGs. A full-fledged Center will have functions including
building an SDG big data technology service system capable
of storage, calculation, analysis and service, conducting
scientific research on monitoring and evaluation of SDG
indicators, developing and operating SDG science satellites,
constructing a think tank on science and technology for
sustainable development, and promoting personnel training

and capacity building of big data for SDGs.

In recent years, CAS has conducted case studies that use Big
Earth Data technology to monitor and evaluate indicators
for six SDGs -- zero hunger, clean water and sanitation,
sustainable cities and communities, climate action, life
below water and life on land. CAS issued the report on
Big Earth Data in Support of the Sustainable Development
Goals for two consecutive years during the 74th and 75th

United Nations General Assembly sessions, highlighting the
important value and role of Big Earth Data technology in

addressing challenges for sustainable development.

The 2021 report integrates innovations in the past three
years in the practice of using Big Earth Data technology
to monitor and evaluate SDGs. Focusing on six Goals,
the report presents 26 typical cases on four scales -- local,
national, regional and global, detailing the results of
research, monitoring and evaluation of SDG indicators from
the perspectives of data, methods and models, and decision
support. Furthermore, the report demonstrates methods for
monitoring, evaluating and analyzing the interactions among
multiple SDGs, thus laying a good foundation for future
coordinated pursuit of multiple SDGs in different scenarios.
The findings of the report can provide new analytical tools
for better understanding and more accurate identification of
issues related to SDGs and they are also of great practical
value to promoting SDGs through science, technology and

innovation.

This report could not have been completed without the
guidance given by the Ministry of Foreign Affairs, and the
valuable feedback and suggestions from leaders and experts
of the National Development and Reform Commission, the
Ministry of Natural Resources, the Ministry of Ecology
and Environment, the Ministry of Housing and Urban-
Rural Development, the Ministry of Transport, the Ministry
of Water Resources, the Ministry of Agriculture and Rural
Affairs, the Ministry of Emergency Management, the
National Bureau of Statistics and the National Forestry and
Grassland Administration. Finally, our utmost appreciation
goes to all the scientists on the team for their hard work.

Zﬂyf,

Guo Huadong

Director of the International Research Center of Big Data for
Sustainable Development Goals

Member of the UN 10-Member Group to support the TFM for
SDGs (2018-2021)
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Executive Summary

v

2021 is the first year in the Decade of Action that the United
Nations has launched to accelerate the implementation of
Sustainable Development Goals (SDGs). There are still
severe challenges in realizing the 2030 agenda for Sustainable
Development, and the COVID-19 pandemic has had a
further serious impact on the realization of the 2030 Agenda.
Science and technology are important levers for meeting
these challenges, and advancing and implementing the 2030
Agenda. In his congratulatory letter for the inauguration of
the International Research Center of Big Data for Sustainable
Development Goals (CBAS) and opening ceremony of the
International Forum on Big Data for SDGs on September 6th,
2021, Chinese President Xi Jinping noted, "Scientific and
technological innovation and application of big data will help the
international community overcome difficulties and implement
the UN 2030 Agenda globally." UN Secretary General Antonio
Guterres said in a video message for the inauguration of the
CBAS, "Building on the momentum that's being generated by
the UN Technology Facilitation Mechanism — for innovation,
solutions and better results where policy meets science, ...
we can mobilize scientific and technological communities to
help achieve the Sustainable Development Goals." This report
showcases the innovative practice of applying Big Earth Data
to the monitoring and evaluation of indicators for six SDGs,
i.e., SDG 2 Zero Hunger, SDG 6 Clean Water and Sanitation,
SDG 11 Sustainable Cities and Communities, SDG 13 Climate
Action, SDG 14 Life Below Water, SDG 15 Life on Land, and
the analysis of the interactions among multiple SDG indicators.

With regard to SDG 2 Zero Hunger, focusing
on sustainable food production systems (SDG
2.4), Big Earth Data technology was used
to develop methods for mapping cropping
intensity and crop types—two key elements
of cropland use, demonstrating Big Earth Data technology's
capability of timely and rapid information acquisition and
multi-source data fusion. Case studies found that crop intensity
dropped slightly by 6% over the past two decades and the
centroid of 14 main crops moved mainly in three directions from
2000 to 2015: northeast, northwest and southwest. Besides, a
data-driven efficient ecological agricultural paradigm aiming
at transforming the grain production system was proposed;
through an experimental farm, it provided technical support and
demonstration for farmers and farm operators of different scales

to move towards sustainable agriculture.

With regard to SDG 6 Clean Water and

Sanitation, the studies focused on four targets:

CLEAN WATER
AND SANITATION

water quality (SDG 6.3), water-use efficiency
(SDG 6.4), integrated water resources

v

restoration of water-related ecosystems (SDG 6.6). Data sets

management (SDG 6.5) and protection and

were generated on China's lake water clarity, global large lake
water clarity, global crop water-use efficiency, China's natural
and artificial water bodies and vegetated wetlands. China's
Integrated Water Resources Management (IWRM), covering
water quality, quantity, and water-related ecosystems, was
evaluated. Demonstrations were done for the global application
of Big Earth Data technology to indicators of lake water clarity
and crop water-use efficiency. The key findings include that
the world's large lake water bodies have become clearer; crop
water-use efficiency in agricultural regions in the world is on
an upward trend; China has reached the medium-high level in
IWRM; China's natural and artificial water bodies have increased
in area; the loss of vegetated wetlands in China has significantly
slowed down. These results are a useful supplement to the
China's data set in the United Nations Global SDG Database
and can be drawn on by other developing countries in their

monitoring and evaluation of SDG 6.

With regard to SDG 11 Sustainable Cities

and Communities, three targets, i.e., public

transportation (SDG 11.2), disaster assessment

(SDG 11.5) and public open space (SDG

11.7), were monitored and evaluated with
the support of Big Earth Data technology, and an integrated
evaluation of multiple SDG 11 indicators was carried out at the
municipal levels in China. Data sets were generated on the high-
precision population kilometre gridded data by gender and age in
China, interannual variation of the total loss of natural disasters
at the prefectural level in China, China's Urban Green Space
(UGS) fraction data products, community-scale Chinese urban
landscape datasets. The key findings include that the proportion
of the population with convenient access to public transportation
was 90.15% in 2020, up 9.59% from 2018, the impact of natural
disasters on China showed an overall downward trend, with
notable improvement in comprehensive disaster prevention,
reduction and resistance, UGS has increased significantly thanks
to effective urban greening efforts since 2000, sustainability
improved in 2020 at the municipal level compared with 2015.
The above research results provide data and decision support



for the realization of SDG 11 in China, and can also provide
demonstration and reference for other countries.

13 CLIMATE With regard to SDG 13 Climate Action, the

ACTION studies focused on strengthen capacity to natural
disasters (SDG 13.1), climate change measures
(SDG 13.2) and climate change adaptation

and early warning (SDG 13.3). By integrating

&

Big Earth Data, a series of data sets including interannual range

data of sand and dust, CO, and NO, concentration spatial data
in China, China and global forest net ecosystem productivity
products, global ocean heat content data set by integrating sea
surface satellite and ARGO buoy observation data. Based on these
data sets with clear spatiotemporal information, several important
discoveries are made, including that in the past 10 years, the
frequency of spring dust weather in northern China has fluctuated
and decreased; China's CO, concentration is still increasing in
recent years, but the increase rate decreases. Affected by the
fluctuation of economic activities brought by COVID-19, the
average concentration of NO, in China reached trough in February
2020, and reached its peak in December 2020 and exceeded the
previous year. The analysis of NEP in China and the world shows
that the increase of forest area has an important contribution
to the increase of carbon sink. In recent ten years, the overall
performance of China's forests is carbon sink, with an average rate
of 199.54 TgC/a; the warming of the upper 2,000 m of the global
ocean is significant and increasing, with a warming rate of 2.25x10°
J/m® per decade. The above data and analysis can provide
scientific basis for coping with disasters and long-term impacts

caused by climate change and carbon neutralization strategy.

With regard to SDG 14 Life Below Water,
the studies focused on the sustainable

14 II-JIEIFI]WWATER

management and protection of marine and
coastal ecosystems (SDG 14.2). Through
three cases at two spatial scales in China and

typical regions, the production of data sets such as dynamic
changes of Chinese mangrove forests and dynamic changes of
Chinese coastal aquaculture ponds and the verification of the
practicality of the monitoring and early warning model of Yellow
Sea macroalgal blooms were completed by spatiotemporal data
overlay, four-Dimensional Variational (4DVar) data assimilation
and deep learning methods. The results showed that the spatial
distribution of floating macroalgal could be quickly extracted
from remote sensing images on the Big Earth Data cloud

platform and that the drift trajectory of the algal bloom could

Executive Summary

be predicted in real time through the 4DVar model. From 2015
to 2020, mangrove expanded in China and its total area had a
net increase of 16%. In the same period, coastal aquaculture
ponds in China demonstrated visible spatiotemporal variations.
Overall, driven by the policy of returning ponds to wetlands, the
total area of such ponds showed a continuous downward trend.
The above research results can provide a model reference for
effectively supplementing SDG 14 related basic data sets and
improving the capacity of marine ecological disaster prevention

and control.

With regard to SDG 15 Life on Land, the
studies focused on three targets, conservation,
restoration and sustainable use of terrestrial
and inland freshwater ecosystems (SDG 15.1),
conservation of mountain ecosystems (SDG
15.4), halting the loss of biodiversity (SDG 15.5). Two data
sets, mountain green cover index and 1 km x 1 km grid spatial
distribution of endangered species, were produced. China's
ecosystem quality and dynamic change, important grassland
ecosystem protection status and gaps and Siberian crane habitats
spatiotemporal change were evaluated by taking Big Earth Data
approaches. It was found that from 2000 to 2015 the ecosystem
quality in China improved significantly, with the integrated
ecosystem quality index up by 21% approximately year-on-year,
that grassland ecosystems in China were generally well protected
but still with five types of grassland of smaller areas being
under-protected, and that Siberian crane habitats in Poyang Lake
wetlands had degraded and needed urgent protection. These
could serve as references for monitoring and evaluating SDG 15

indicators at the global, national and local levels.

With regard to the interactions among SDG indicators, the report
discussed the methods and practices of spatial information digging
and integrated evaluation by using Big Earth Data, which includes
evaluating the synergy and trade-off relationships among SDG
indicators in the context of their correlations; simulating multiple
indicators' interactions in future environmental, economic and
social scenarios in the context of their temporal variations; making
integrated evaluation of regional SDGs in the context of multiple
indicators experience and study. Through the interactions study of
indicators, we can find potential scientific problems and evaluate
the impact of policies and measures, guide the dynamic planning
of policies, and speed up the implementation process of regional
sustainable development.
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Big Earth Data in Support of the Sustainable Development Goals (2021)

Introduction

In a bid to push for realization of all the 17 SDGs by 2030, the
United Nations formally launched in January 2020 the Decade
of Action, calling for accelerating sustainable solutions to all the
world's biggest challenges. However, the COVID-19 pandemic
has had a serious impact on the global implementation of the
2030 Agenda. It has increased the vulnerability of the global
food system, with the number of people facing hunger in
2020 about 118 million, or 18% higher than in 2019, and food
security emergencies at the highest level in five years. Over the
past century, global water use has grown at more than twice the
rate of population growth, and UN estimates suggest that global
freshwater resources will decline by 40% by 2030, making a
water crisis highly likely. Prior to the pandemic, cities already
saw growing numbers of slum-dwellers, more polluted air,
minimal public open space and limited public transportation,
and the pandemic has further exposed and aggravated such
vulnerabilities. The concentration of major greenhouse gases
in the atmosphere continues to increase, with 2015-2020 being
the warmest six years on record. Climate change has made the
achievement of many SDGs less likely. The oceans constantly
face threats such as pollution, warming and acidification, which
are disrupting the marine ecosystem. Deforestation and forest
degradation, the continued loss of biodiversity and degradation
of ecosystems are having far-reaching impacts on human well-
being and survival. The global target of halting biodiversity loss
by 2020 was not met (UN, 2021a, 2021b).

The UN Sustainable Development Goals Report 2021 points out
the need for concerted efforts of the world to support a recovery

guided by the 2030 Agenda for Sustainable Development, and

Big Earth Data Scienc

Q

Data collected from
ubiquitous sensing

Historical data
Sensor network
Mobile internet

Ubiquitous networking

v

e

preservation of planet Earth.

the obtain and the availability of data is one of the key factors in
achieving a better recovery.. Data that supports monitoring and
evaluation of SDGs has increased significantly over the years,
but major gaps remain in terms of geographic coverage and
timeliness of data. The Global SDG Indicators Database reveals
that only a few SDGs' data cover more than 80% of countries
and for most SDGs data timeliness is a serious problem (UN,
2021c). These data gaps hinder the real-time monitoring of
progress towards the Goals and the assessment of regional
disparities.

Data innovation is the key to closing the gaps and accelerating
the realization of SDGs, and an important area of such
innovation is the fusion of geospatial information and statistical
information. Earth observation data collected by satellites,
unmanned aerial vehicles and ground sensors can not only
supplement official statistics and survey data, but also be used
together with traditional data to create high-quality information
that is more timely and spatially representative. Based on
earth observation data, Big Earth Data, with spatial attributes,
has strong spatiotemporal and physical correlations and good
controllability of data generation methods and sources, in
addition to the general properties of big data: massive, multi-
source, heterogeneous, multi-temporal, multi-scale and non-
stationary (Guo et al., 2016; Guo, 2017). Big Earth Data can
help us understand the complex interactions and evolutionary
processes between the Earth's natural systems and human social

systems, thus contributing to the realization of SDGs.

The Big Earth Data science includes these main technological
systems: (1) ubiquitous sensing of Big Earth Data, (2) credible

Big Earth Data science aims at using methodologies and tools to generate knowledge from diverse, numerous and
complex data sources, and developing theories for understanding the mechanisms of how a social-physical

system operates and evolves, both of which are necessary for a sustainable human society essential for the

E

Credible

data sharing

Data block Data connection Data abstraction Data comprehension
Data chain Data transformation Modelling Data mining
Timestamp Data filtering Multiple feedback Artificial intelligence
Block chain Data integration Complex system  Support for policy-making

/M Figure 1-1. The technological systems of the Big Earth Data science



Big Earth Data sharing, (3) multiple Big Earth Data fusion, (4)
Big Earth Data digital twin and complex process simulation,
and (5) intelligent cognition of Big Earth Data (Fig. 1-1). Using
the Big Earth Data to support SDG monitoring and evaluation
has the following unique advantages: first, monitoring results
are more transparent and repeatable on the strength of data
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/M Figure 1-2. Big Earth Data Supporting SDG Roadmap

Since 2018, CAS has been using Big Earth Data to support
SDGs. Based on the Big Earth Data Science Engineering Program
(CASEarth), the Big Earth Data sharing service platform and
the Big Earth Data Cloud service infrastructure have been
established to provide data, on-line calculation and visualization
for the monitoring and evaluation of SDG indicators (Fig. 1-2).
Currently, CASEarth shares a total of about 10 petabytes of data,
and updates 3 petabytes of data every year. As of September
2021, there were 360,000 users in 147 countries and territories,
with 5797 million data visits.

Of the 17 Goals, SDG 2 Zero Hunger, SDG 6 Clean Water
and Sanitation, SDG 11 Sustainable Cities and Communities,
SDG 13 Climate Action, SDG 14 Life below Water and SDG
15 Life on Land are closely related to the Earth's environment
and resources. The report on Big Earth Data in Support of the
Sustainable Development Goals, in its current version, presents
results of studies carried out on selected indicators under six
Goals where Big Earth Data can play an important role in their

monitoring and evaluation. In its 2019 and 2020 versions, the

—

Introduction

from diverse sources verifying each other; second, information
on spatial difference and dynamic change is linked to SDG
indicators, enabling decision-makers to use the former to detect
and address the imbalances and weak links in the latter to
identify the changing trend and policy effect.
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SDG products

report presented new methods, new products and decision
support cases of using Big Earth Data to monitor and evaluate
progress on the SDGs.

The 2021 report focuses on the updates and extension, new
methodologies and indicators, the tracking and evaluation
of several SDGs implementation process of China and the
world, and theory and practice of multi-indicator interactive
and coordinated development. It presents 26 typical cases on
18 targets, showcasing the results of research, monitoring and
evaluation of relevant SDGs and their indicators at four scales,
local, national, regional and global, totaling 20 data products,
13 methods and models and 16 decision support. The outcomes
include change in cropping intensity and natural and artificial
water bodies in China over 20 years, change in urban green
space in China, the changes in global terrestrial ecosystem
carbon sink and drivers, and the assessment of the effectiveness

of ecological protection and restoration in China.

China's sustainable development process between 2010 and 2020

was evaluated centering on 20 indicators of six SDGs, based on
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the research results from the three editions of Big Earth Data in
Support of Sustainable Development Goals (Table 1-1).

So far, of the 20 evaluated indicators, China is close to or has
met four, including SDG 2.2.1 prevalence of stunting among
children under 5 years of age, SDG 11.2.1 proportion of
population that has convenient access to public transport, SDG
15.3.1 proportion of land that is degraded over total land area,
and SDG 15.4.2 Mountain Green Cover Index. Attention needs
to be given to regional differences in the future. Regarding SDG

Introduction

6.4.1 change in water-use efficiency over time and SDG 15.5.1
Red List Index, despite improvement in recent years, major
challenges remain, and attention should be given to water saving
and wildlife protection, two areas where greater efforts are called
for. The result shows between 2010 and 2015 two indicators
worsened and 11 indicators improved; between 2015 and 2020
no indicator worsened and 16 improved. Overall, China has
made significant improvement especially since 2015, and is on
track to achieving these six Goals by 2030.
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The Goal of zero hunger aims to ensure food security, improve
nutrition and promote sustainable agriculture. It is fundamental
to global sustainable development. Yet progress toward this
Goal has been slow over the past five years since the launch
of the 2030 Agenda for Sustainable Development. Hunger and
food insecurity at the global level continue to deteriorate due
to regional conflicts, climate change, economic recession (as a
result of the COVID-19 pandemic recently) and other factors.
The prevalence of moderate or severe food insecurity has been
slowly increasing for six years in a row, and reaching 30.4%
by 2020. The prevalence of undernourishment increased by
1.5 percentage points in 2020 after remaining stable for five
consecutive years, making it more challenging to reach the Goal
of zero hunger by 2030. The Food and Agriculture Organization
of the United Nations (FAO) has outlined six potential pathways
for transforming food systems that cover food supply, access,
utilization, stability, empowerment and sustainability, while
listing technology, data and innovation as one of the two
categories of accelerators (FAO et al., 2021).

Tracking, monitoring and evaluating zero hunger, both in terms
of degree and process, can clearly identify the breadth and
depth of the various food security problems in different regions,
and inform decisions on regional food system transformative
programs. Currently, the monitoring and evaluation of SDG 2

indicators are mainly accomplished by statistical surveys (FAO,
2020a), result in a problematic timeliness. The COVID-19
pandemic has made the timeliness of data more challenging
(FAO et al., 2021). To develop methods of timely access
to information is an important prerequisite for immediate
feedback and prompt action. At the same time, the integration of
geospatial and statistical information is considered an important
field of data innovation, instrumental in gaining insight into data
linkages and relationships and informing both decision-makers
and the general public (UN, 2021a). Especially for SDG 2, a
Goal that closely integrates social, economic and environmental
dimensions, multi-source data fusion is an important tool for

cognitive findings and decision support.

Focusing on SDG 2.4, this chapter will demonstrate the potential
of Big Earth Data for timely information acquisition and multi-
source data fusion for two fundamental elements closely
related to sustainable food production: cropping intensity and
crop types. In response to the transformation pathways of food
systems proposed by FAO, we developed a data-driven paradigm
of efficient ecological agriculture, and built an experimental
farm to test the paradigm. It also serves as a demonstration
for the transformation of agriculture system to climate-smart
and environment-friendly to the benefit of the protection and

restoration of the natural environment.



To promote SDG 2.4 on sustainable food production systems, we
have proposed the method of extracting cropping intensity based
on real-time Earth observation data, the method of mapping crop
spatial distribution by fusing remotely sensed data, statistics
and other multi-source data, and the paradigm of data-driven
efficient ecological agriculture based on agroecological theory.

Decision-making support for sustainable food production is
provided to both government and farmers (Table 2-1). Based on
these case studies, more data, technologies and policy tools are
made available by Big Earth Data in support of achieving zero
hunger.

Table 2-1 Cases and Their Main Contributions

Method and model: Method for high accuracy remote
sensing-based cropping intensity monitoring

Spatiotemporal
variations of cropping
intensity over 20 years
in China

2.4.1 Proportion

of agricultural area
under productive and
sustainable agriculture

Mapping crop
distribution and its
changes in China

Tier IT

An experiment of efficient

ecological agricultural
paradigm in the low-
medium-yield region
along the lower reaches
of the Yellow River

Decision support: It informs decision on managing cropland
multiple cropping system to achieve sustainable food
production

Data product: Spatial distribution data set of 14 major crops
in China in 2000 and 2015

Method and model: A crop spatial distribution mapping
model integrating remotely sensed time-series data, statistical
data, and crop calendars

Method and model: Efficient ecological agricultural
paradigm based on agroecological system theory, information
technology and modern agricultural technology

Decision support: It integrates sensor network technology
and big data management platform to inform decisions on
developing efficient ecological agriculture.

(1:5,)




2.4 By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase

productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change,

extreme weather, drought, flooding and other disasters and that progressively improve land and soil quality.

China's cropping intensity data set, with annual updates from 2001 to 2020, was produced

based on multi-source remotely sensed data and cloud platform, with an overall accuracy of

93% as verified by ground-based data.

In the past 20 years, China's average cropping intensity has decreased slightly by 6% partly

due to impact of agricultural policies to promote cropland sustainability, such as cropland

preservation and incentives for fallow and rotation; different regions have seen significant

differences, with larger cropping intensity gaps observed in the middle and lower reaches of the

Yangtze River Basin, Southwest China and South China.

Arable land provides food that supports the very existence
and development of human beings. Its sustainable use plays
an important role in achieving the Goal of zero hunger. China
is a large agricultural country with a population of more than
1.4 billion, but it has a low level of per capita arable land
and faces pressures on its food production system brought by
industrialization and urbanization (Zuo et al., 2018). Cropping
intensity is an important indicator to measure arable land use
intensity. Tracking the change in cropping intensity can help
assess the past development of the food production system and

O Satellite data: Moderate Resolution Imaging Spectroradiometer
(MODIS) Normalized Difference Vegetation Index (NDVI)
data from 2001 to 2020, Sentinel-2, Landsat-5, Landsat-7 and
Landsat-8 data from 2001 to 2020.

inform future agro-policies.

Thanks to more advanced remote sensing technology, the
popularization of high spatiotemporal resolution data has greatly
contributed to the accuracy of cropping intensity mapping.
This study focuses on China, where multi-cropping has a long
history, and constructs a cropping intensity mapping method,
through fusion of multi-source remotely sensed data and cloud
computing technology, to map and analyze annually updated
cropping intensity at the national scale from 2001 to 2020.

© Other data: cropland layer (2000, 2010, and 2015) from
ChinaCover 30 m resolution land cover data (Wu, et al., 2017);
nine Chinese agro-ecological zones' data (Sun, 1994); and

ground-based cropping intensity samples.



Time series NDVI data set was constructed by normalizing multi-
source remotely sensed data, upon which a spatiotemporally
continuous NDVI data set was generated by data smoothing
and gap filling. The phenophase-based approach (Liu et al.,
2020) was used to map the annual updates of cropping intensity
from 2001 to 2020. The results were validated based on a large

Figure 2-1 shows the cropping intensity maps of China in
2001, 2007, 2013 and 2020. In general, the single cropping
pattern is dominant in the country, mostly seen in northern
China due to climatic conditions. The double cropping areas
mainly concentrate in the North China Plain, where irrigation
infrastructures are well developed to compensate for the low
rainfall in winter; the double cropping pattern is also commonly
observed in the south, the middle and the middle and lower
reaches of the Yangtze River, and Taiwan province, where there
are abundant rain and heat during the crop growing season. The
triple cropping pattern is basically seen in Hainan, Guangdong
and Guangxi. The validated results show that the overall
accuracy of obtained cropping intensity in China is about 93%,
among which the highest accuracy is for the single cropping
pattern.

Since 2001, cropping intensity of China has been decreasing
in general, and the national average has dropped by 6% in the
past 20 years (Fig. 2-2), due to impact of agricultural policies to
promote cropland sustainability, such as cropland preservation

number of ground-based samples obtained nationwide collected
using GVG (GPS, Video and GIS) smart phone application.

The average of cropping intensity for the whole country and
the 9 agroecological zones were calculated for each year of the
studied period. The change rates and linear changing trends were

derived, and the spatiotemporal changes analyzed.

and incentives for fallow and rotation. Significant differences
on changing patterns in cropping intensity are observed among
the nine agroecological zones (Fig. 2-3). In the Huanghuaihai
zone, one of the important crop-producing regions, cropping
intensity increased by 8% from 2001 to 2020. In the Inner
Mongolia and zone, it also showed an upward trend, and the
increase was significant. In Gansu, Xinjiang and the Qinghai-
Tibet Plateau, there was an upward trend but with fluctuations.
In contrast, middle and lower reaches of the Yangtze River has
seen a significant decline of 6% in cropping intensity in the past
20 years, making it the only agroecological zone in China with
a significant decrease. The prevalent shift from double-cropping
rice to single-cropping rice in this region is directly attributable
to labor transfer away from agriculture. The cropping intensity
in the South and Southwest had a downward trend with
fluctuations, while it remained stable without any significant
changes in the Northeast and the Loess Plateau. In general, fairly
large gaps in cropping intensity were observed in the middle and
lower reaches of the Yangtze River, Southwest and South China.
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Outlook

The cropping intensity mapping can provide scientific
data support for quantitative analysis of cropland use
intensity and sustainability. The annually updated mapping
conducted in this case shows that the cropping intensity
in China has overall been on a slightly downward trend.

However, remote sensing-based estimates show that the
~®- China - Huanghuaihai  —®— Middle and Lower Yangtze total grain production in China has increased by about
205 29% in the past 20 years, with year-on-year increase

in most years. This increase is closely linked to the
increasing crop yield as contributed by the improvement

(fertilization, irrigation, etc.).

A of breeding technology, agricultural management measures
185

In the future, Synthetic Aperture Radar (SAR) data can
be used to tackle the difficulty in obtaining optical images
in frequently cloudy and rainy southern regions, and to
A improve the accuracy and reliability of cropping intensity

165
—— \V products in China.
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2.4 By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase

productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change,

extreme weather, drought, flooding and other disasters and that progressively improve land and soil quality.

By integrating cropping patterns extracted from time-series remotely sensed data, crop

calendars, and statistics on planting area, the spatial distribution maps of 14 major crops in

China in 2000 and 2015 with 1 km resolution was generated. The spatial heterogeneity of crop

distribution reflected by our results is about 30% higher than the results based on commonly

used mapping method.

From 2000 to 2015, the centroids of crops had mainly shifted to the northeast (for corn, peanut,

soybean, etc., accounting for 51% of the total crop planting areas), to the northwest (for cotton,

millet, etc., accounting for 24% of the total crop planting areas) and to the southwest (for

sorghum, sugar beet, etc., accounting for 25% of the total crop planting areas), primarily due to

the change in cultivated land distribution, cropping pattern and planting structure.

Crops grown on cultivated land are the food source for human
survival. They provide more than 90% of the calories and about
80% of the protein required by human life and activities (Kastner
et al., 2012). Changes in crop spatial distribution and planting
structure usually lead to changes in nutrient supply. At the same
time, given their different biological characteristics, crops are
usually managed differently, which introduces quite different
environmental impacts. Mapping crop distribution can provide

basic information for the analysis of global food security,

© Remotely sensed data: China Land Use Data Set with a scale
of 1:100,000 and time-series MODIS Enhanced Vegetation
Index (EVI) data for 2000 and 2015.

Based on MODIS EVI time series data, Harmonic Analysis of
Time Series was used for de-cloud and de-noise process, and then

the crop growth process curve at pixel level was constructed.

environmental change and climate change in the world.

At present, most researches regarding crop mapping based on
remote sensing have focused on a few crops, although earth
observation technology have been advanced constantly. Large-
scale multi-type crop mapping is still mainly based on the fusion
of remotely sensed and statistical data, while the remotely
sensed information is yet fully used to better reflect the spatial
heterogeneity of crop distribution.

O Statistical and survey data: agricultural statistical data, crop
calendar data, and agro-meteorological data for 2000 and 2015.

Through the extraction of peak number and occurrence time of
the peaks, the information on cropping pattern of cultivated land
was obtained, including single cropping, double cropping (with



or without winter crops), triple cropping (with or without winter
crops), etc.

Based on analytical induction of crop calendar survey data,
cropping patterns were regionalized; meanwhile, the planting
area of each crop by administrative unit was obtained and crops
divided into groups according to cropping season, and the

planting area was calculated by different cropping season. Based

on the cropping patterns derived from remotely sensed data, their
corresponding cropland areas, and planting areas of different
crops for each season, the crop area was calculated for each
pixel, and then the spatial distribution mapping was generated of
14 major crops in China in 2000 and 2015. We also analyzed the
spatial patterns of the crop distribution and change in centroid of
each crop from 2000 to 2015.
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The diversity index was used to measure the richness of spatial
information displayed in crop distribution maps, and the mapping
results of this study were compared with those generated by the
common used method-average allocation mapping. It was found
that in eight randomly selected counties, the spatial diversity
index of crop planting area under this method was between 6
and 7, while the diversity index under the average allocation
mapping method was below 5. At the same time, the linear
fitting method was used to compare the spatial distribution of
rice on our map with that of paddy fields in the China Land Use
Data Set with a scale of 1:100,000. It was found that the fitness
was 0.67, indicating that the results obtained by our method can
reflect the spatial heterogeneity of crop distribution properly.

Different crops are usually distributed in different areas because
of their climatic suitability (Fig. 2-4). As a staple food crop with
the largest planting area, corn is mainly distributed in the North
China Plain and northeast China. About 32% of the country's
cultivated land is sown to corn. Soybean is the largest legume
crop, mainly distributed in northeast China and the south of the
North China Plain, sown to about 5% of the cultivated land.
Potato is the largest of the tuber crop, mainly sown along the Hu
Line, using about 3% cultivated land. Among oil crops, rapeseed

is most widely sown, mainly in central and southern China,

The crop mapping provides information such as crop spatial
distribution and planting structure, which can effectively support
the evaluation of nutritional security and nutrient stability, thus
facilitating the monitoring of SDG 2. In this case, the cropping
pattern reflected by MODIS EVI time series data was combined
with the regional crop calendar to provide more detailed spatial
information for the downscaling of statistical crop planting area,

planted on about 5% of the cultivated land. Sugar crops mainly
include sugarcane and sugar beet, distributed in the south and
north of China respectively. Sugarcane has a larger sowing area,

and mainly concentrated in Guangxi.

The change in crop spatial distribution is in a large part due to
human activities, including changes in land use, agricultural
policy, food demand, and market supply and demand (Stabile
et al., 2020). Analysis of changes in centroids of 14 crops
from 2000 to 2015 revealed that the crops mainly moved in
three directions: to the northeast (corn, soybean, peanut, etc.,
accounting for 51% of the total crop planting area), northwest
(cotton, millet, etc., accounting for 24% of the total crop
planting area), and southwest (sorghum, potato, sugar beet, etc.,
accounting for 25% of the total crop planting area). The change
in spatial distribution of cultivated land, the change in multiple
cropping pattern, and the adjustment of planting structure are the
main reasons behind these changes. Urbanization has led to the
loss of cultivated land in southeast China, while the cultivated
land areas in northeast and northwest China have increased due
to the influence of the grain market and policies (Zuo et al.,
2018). Most area of northeast and northwest China belong to the
single cropping region, and the shift of crop area to this region
has an impact on crop yield gap.

formulating a crop mapping method suitable for various crops.
In the future, more crop growth information will be mined from
Earth observation data, such as the length of growing period
and the peak of vegetation index during growing period, to
improve the accuracy of crop mapping. This method will also be
applied to crop mapping on a global level, providing a basis for
assessing global nutritional security.



2.4 By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase

productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change,

extreme weather, drought, flooding and other disasters and that progressively improve land and soil quality.

Based on agroecosystem theory, information technology and modern agricultural technologies,

an experimental farm with an efficient ecological agricultural paradigm (EEAP) has been built

in the low-medium-yield region along the lower reaches of the Yellow River. The paradigm

has significantly improved the economic returns and the sustainability of resources and

the environment of the farm. EEAP is a promising paradigm for agricultural production

transformation.

Through the EEAP experiment, soil organic matter rose 23.08%, consumption of fertilizer,

pesticide and irrigation water dropped by over 10.00%, 70.00%, and 33.33% respectively;

compared with the traditional paradigm (TP), the economic returns of the farm increased
61.99% and sustainability based on the emergy theory increased by 172.50%.

Since the 1950s, the world has made remarkable achievements in
food production. Grain output has more than doubled, reducing
the proportion of undernourished people from 36% in 1969 to
11% in 2018 (UN, 2019). But this high-unit-yield agricultural
production paradigm relies heavily on the use of chemical
fertilizers, pesticides, irrigation water, and machinery and has
given rise to emerging issues: water consumption for agricultural
production accounts for more than 70% of total water
consumption (FAO, 2020b), the nitrogen use efficiency is less
than 50% (FAO, 2018), about 75% of crop diversity has been
lost on cropland, and more than one third of global greenhouse
gas emissions are produced by food system (Crippa et al., 2021).
Therefore, a transformation in agricultural production paradigm

O Observational and experimental data based on a sensor
network and an information platform in the Beiqiu Experimental
Farm, Yucheng, Shandong province, China: meteorological
data, the growing status, soil attributes and productivity of crops
and livestock, and the farm input/output data (such as chemical

fertilizers, machinery, feed, labor, yield, and economic return)

is urgently called for.

To achieve the social, economic, and environmental benefits
sustainable agriculture is to produce, our study proposed the
Efficient Ecological Agricultural Paradigm (EEAP), which
integrates modern agricultural technologies, to be tested out
in a demonstration farm with a medium-scale (15.33 ha) in
the low-medium-yield region along the lower reaches of the
Yellow River. The experiment was expected to improve the
economic return of agricultural production and the sustainability
of resources and the environment, and lead to a comprehensive
solution of sustainable agriculture, contributing to long-term
food security and achieving zero hunger.

and field test data (such as soil organic matter, fertilizer use
efficiency, and water use efficiency).

© Survey data on input/output of 271 farming households in Ji
nan, Dezhou and Weifang, Shandong province, China, including
seeds, pesticides, chemical fertilizers, machinery, labor, and
productivity.



Method

The EEAP, an efficient circular agricultural system involving
crops, livestock and microbe, was developed based on the
theories of agroecosystem and food-energy-water nexus, aimed
at achieving sustainability in multiple ways, such as improving
economic benefits, recycling resources efficiently, and reducing
environmental pressures. A 15.33 ha experimental farm was
built to test and validate this sustainable agricultural production

paradigm (Fig. 2-5a) in the low-medium-yield region along
the lower reaches of the Yellow River. The EEAP consists of
a crop subsystem, a high-value subsystem, and a fermentation
subsystem, tested out on a 15.33 ha farm (Fig. 2-5b).

(1) The crop subsystem produces grain and provides feed for
livestock. The application of organic fertilizer improves soil

sustainability.

' Monitoring site of crops
' Monitoring site of livestock

* Monitoring site of greenhouse
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(2) The high-value subsystem provides nutrient-rich and high-
value cash crops and livestock products; meanwhile, it provides

the sources of organic fertilizer for crops.

(3) The fermentation subsystem improves the production
efficiency of organic manure fertilizer and the use efficiency of
livestock feed using microbial fermentation technologies and
equipment.

Integrated sensor network and big-data management platform
connects all the subsystems and collects data to realize the
quantitative optimization of structure. The data technology along
with a set of modern ecological agronomic technologies creates
a new replicable, efficient, circular agricultural production

paradigm. In addition, the data collected by the sensor network

Through experimental operation on the EEAP farm over two
years, the soil organic matter increased by 23.08% from 13
g'kg' to over 16 g-kg”; fertilizer consumption dropped more
than 10.00% and fertilizer utilization efficiency increased by
more than 8.00%; pesticide application decreased by more than
70.00%, farmland biodiversity increased, with a remarkable
rise in the number of beneficial insects; irrigation water use
decreased approximately by 33.33% from 5400 to 3600 m*ha”
(Fig. 2-6a).

The LPOs of the EEAP and TP were 3789.94 $-ha-a” and
2339.61 $-ha'-a”, respectively, indicating that the economic
benefits of the EEAP increased by 61.99% compared with the
TP (Fig. 2-6b). The ELRs of the EEAP and TP were 1.04 and
3.96, respectively, showing that the production pressure on the
environment of the EEAP went down by 73.74% (Fig. 2-6c¢).
Meanwhile, the ESIs of the EEAP and TP were 1.09 and 0.40,
respectively, indicating that the sustainability of the EEAP
increased by 172.50%.

For a comprehensive solution for sustainable agriculture, this
study proposed an agricultural production paradigm based on
the agroecosystem theory and modern agricultural technologies,
which improves economic, ecological, and social benefits. A
15 ha experimental farm, suitable for household operation, was
built to validate the performance of the new paradigm. The
EEAP, which involves optimized subsystems and integrated
technologies, can be applied to countries and regions that face
pressing resource or environmental issues or poverty. So far,
demonstration EEAP farms of different scales have been built in
the main regions of China (Tsitsihar, Heilongjiang; Songyuan,
Jilin; Hua county, Henan; Zhenjiang, Jiangsu; Heng county,
Guangxi).

and information platform provides strong support for the EEAP
farm's operation, management, and evaluation.

Following the energy theory (Odum, 1996) and considering the
renewability of input resources and the output of agricultural
systems, a set of comprehensive indexes was created to
evaluate the EEAP farm from all the three perspectives of
economic benefits, environmental pressure, and sustainability,
specifically including Land Profit Output (LPO), Environmental
Loading Ratio (ELR), and Emergy Sustainability Index (ESI).
Additionally, the performance of the Traditional Paradigm (TP)
was used as a comparison to measure sustainability improvement
on the EEAP farm.
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Figure 2-6. The changes of the experimental farm's
performance in Soil Organic Matter (SOM), Fertilizer Use
Efficiency (FUE), Pesticide Use (PU), and Irrigation Water
(IW) after implementing EEAP (a). The comparisions of
EEAP and TP in Land Profit Output (LPO) (b). Environmental
Loading Ratio (ELR) (c). and Emergy Sustainability Index
(ESI)



Sustainable food production is the foundation for achieving
the Goal of zero hunger and an effective way to address global
challenges such as climate change and land and ecological
degradation. Food production is one of activities with the most
intense interactions between nature and human beings. The
improvement of its sustainability and security can be achieved
by fully applying science, technology and innovation to
governance as well as individual and collective actions. Focusing
on sustainable food production systems under SDG 2.4, this
chapter has presented national-scale spatial mapping methods for
cropping intensity and crop distribution based on Big Earth Data
technology, and provided spatial and temporal pattern change
analysis of these two key elements of cropland use. The results
can inform decision-makers on national sustainable agriculture.
Moreover, the data-driven Efficient Ecological Agricultural
Paradigm, tested out on experimental farms, is proposed to
provide decision support as well as a paradigm of sustainable
agriculture for farm operators of varying scales. The findings are
as follows:

(1) Capacity for timely and rapid information acquisition
Annual updates of cropping intensity index of China from 2001
to 2020 was obtained through fusion of multi-source Earth
observation data with a cloud computing platform, and it was
found that the index had dropped slightly by 6% over the past
20 years. Areas where improvement was possible in cropping
intensity were identified, as a third element that can increase

grain yield.
(2) Capacity for information extraction based on multi-source

data fusion

Targeting at multi-crop system that underpins the supply of
multi-dimensional nutrients, the spatial distribution of 14
major crops in China for 2000 and 2015 was mapped, based
on cropping pattern derived from time-series remotely sensed
data, crop calendar, and planting area statistics. It was found
that the centroids of crop distribution had mainly moved in three

directions to the northeast, northwest and southwest.
(3) Transformation of food production system

An efficient ecological agriculture paradigm has been
established, based on agroecosystem theory, information
technology and modern agricultural technologies, and tested out
on experimental farms to be instrumental in enhancing economic
benefits, reducing resource consumption, and mitigating
environmental impact. The EEAP is an exemplar for sustainable
agriculture.

The report demonstrates, through case studies, the capabilities
and potential of Big Earth Data for timely information
acquisition and multi-source data fusion for detecting and
analyzing food production systems, and provides a paradigm in
favor of the transformation of food production system toward
sustainable development.












B CLEAN WATER
ANDSANITATION

1* B Background [

SDG 6 is to provide clean water and sanitation for all and
manage them sustainably. According to the latest progress
update issued by the UN Water, the world was off track to SDG
6 even before the outbreak of COVID-19 (UN-Water, 2021).
At present, billions of people around the world still live without
safely managed drinking water and sanitation. Many drinking
water sources are drying up; water pollution is increasing; water-
intensive industries, agriculture and the energy sector are still
growing to meet the needs of an expanding population.

In order to solve the problems hindering the realization of SDG
6 and bring the world back on track, the United Nations has
launched a Global Acceleration Framework including financing,
data and information, capacity development, innovation,
and governance (UN-Water, 2020a). Among them, data and
information are meant to improve water-related monitoring and
assessment through data generation, validation, standardization
and information exchange, including drawing on coherent data,

innovative approaches, and tools.

The capacity to monitor and evaluate SDG 6 has already
increased greatly in recent years, benefit from the rapid
development of Big Earth Data technology. The characteristics
of these technical, such as remote sensing, regular revisit, and
rapid information extraction, make the high spatiotemporal
resolution monitoring of SDG 6 indicators not only possible,
but more accurate and comprehensive and less costly and time-

consuming. However, despite their availability, up to now,
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UN Member States on average only have data on two-thirds
of indicators for SDG 6, and 38 member states have data on
fewer than half of all indicators (UN-Water, 2021). There is an
urgent need to improve the national-level monitoring of SDG 6
indicators through the development of technical and institutional
capacity and infrastructure.

Case studies in the past two years involving the use of Big Earth
Data have led to technological accumulation and demonstration
for application regarding nationwide evaluation of SDG 6.3
and SDG 6.6, and also major progress in the monitoring
and evaluation of SDG 6 indicators in China. This chapter
evaluates the effectiveness of China's integrated management
of water quality, water quantity and water ecosystems, covering
SDG 6.3 on improving water quality, SDG 6.4 on increasing
water-use efficiency, SDG 6.5 on integrated water resources
management, and SDG 6.6 on protecting and restoring water-
related ecosystems, and it also demonstrates the use of Big
Earth Data in the global monitoring of certain indicators, while
being consistent with the methods and regional and national
assessment and demonstration used in the 2019 and 2020
reports. The case study results presented in this chapter are a
useful supplement to the Chinese data set in the United Nations
SDG database system. The use of Big Earth Data for accurate
and objective evaluation of SDG 6, as done in China, can also be
an exemplar for other developing countries.



CLEANWATER
ANDSANITATION

E Main Contributions|

The five cases in this chapter mainly produced data products and
decision-making support. The data products include China's lake
water clarity data set, the global large lake water clarity data
set, China's natural and artificial water bodies data set, China's
vegetated wetlands data set, and long-term time series of global
crop water-use efficiency data set. In terms of decision support,
the assessment results of China's integrated water resources

management will directly inform policy measures to improve
the existing system for water resources management, while the
assessment conclusions on lake water clarity, distribution of
natural and artificial water bodies, dynamic changes in vegetated
wetlands can inform water-related environmental governance
and ecological protection in different administrative divisions
(Table 3-1).

Data product: China's lake water clarity remotely sensed data
set (1985-2020, every 3 years, 30 m); Global large lake clarity
remotely sensed data set (2010, 2015, and 2020, 500 m)

Decision support: It provides basic data and scientific
evaluation results that can inform efforts of lake water-related
ecological restoration and protection

6.3.2 Proportion of Monitoring and

bodies of water with good ~ Tier II .
ambient water quality changes in lake water
clarity
6.4.1 Change in water-use . Assessment of change
. . Tier I in global crop water-use
efficiency over time .
efficiency
6.5.1 Degree of integrated The assessment of
water resources Tier I China's Integrated Water
management Resources Management
Change in natural and
artificial water bodies
in China from 2000 to
6.6.1 Change in the 2020
extent of water-related Tier I

ecosystems over time

Spatiotemporal changes

in China's vegetated
wetlands

evaluating the dynamic

Method and model: Evaluation of crop water-use efficiency
based on multi-source remotely sensed data and crop growth
processes on a global scale

Data product: Global crop water-use efficiency data set from
2001 to 2019 (annual, 1 km)

Decision support: It informs efforts to improve and upgrade
the water conservancy governance system and capacity.

Data product: China's natural and artificial water bodies data
set (2000, 2005, 2010, 2015, and 2020, 30 m)

Decision support: It provides basic data and scientific
evaluation results for the investigation and evaluation of
surface water resources.

Data product: Spatial distribution of China's vegetated
wetlands data set (2010, 2015, and 2020, 30 m)

Decision support: It provides basic data and scientific results
for wetland protection and restoration
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CLEAN WATER
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LI Case Study [

Monitoring and evaluating the dynamic changes
in lake water clarity

Target: 6.3 By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous
chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe
reuse globally.

- A Highlights / N
O This study developed and validated a lake water clarity inversion model based on satellite
remotely sensed data and calculated the proportions of clear lakes in China.
O Spatial distribution data sets of water clarity were created for China's lakes from 1985 to 2020
and for large lakes in the world in 2010, 2015, and 2020.
O During 2001 and 2020, the clarity of China's lake waters increased overall, and so did the
clarity of large lakes in the world.
-
Background

Under the Goal of water and sanitation for all proposed by the
United Nations in 2015, SDG 6.3.2 is defined as the proportion
of surface water bodies with good ambient water quality in each
country to the total number of surface water bodies. However,
conventional field sampling cannot meet the need of large-scale
surface water quality monitoring, and satellite remotely sensed
data has become an important and low-cost source of data for
this purpose. Water clarity, an important lake water quality
parameter that can be monitored by satellite remote sensing, is a

Data used

© Remotely sensed data: Landsat TM/ETM+/OLI data of China
from 1985 to 2020 at a spatial resolution of 30 m. MODIS/Terra
global data at a spatial resolution of 500 m in 2010, 2015, and
2020.

© In situ data: field data of water clarity of surface water
bodies in China, and data sets from the National Earth System
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significant indicator that reflects the comprehensive conditions
of water.

This study proposed a satellite remote sensing method,
employing the Big Earth Data technology, to analyze the
spatiotemporal changes from 1985 to 2020 in the water clarity
of China's lakes larger than 1 km’. This method was then applied
to monitoring the clarity of large lakes bigger than 25 km’ in the
world in 2010, 2015, and 2020, producing data sets in support of
the global evaluation of SDG 6.3.2.

Science Data Center and China Lake Scientific Database;
shared measured data sets of Secchi disk depth acquired from
the European Multi Lake Survey (EMLS) and United States
AquaSat.

O Preliminary geographic information: global coastal zone
vector data and 30 m Global Surface Water (GSW) data set.



Method

This study used Landsat and MODIS surface reflectance
products as the main data sources. First, a calculation model
was constructed based on the Forel-Ule Index and hue angle a,
which was normalized based on the spectral response function
of Landsat and MODIS blue, green, and red bands. Then a water
clarity retrieval model (Wang et al., 2020) was developed based
on the above information and validated by the acquired global

data sets of typical surface water bodies. Subsequently, water

Results and analysis

Figure 3-1 shows the long-term trends of average water clarity
(also known as Secchi Depth, or SD) of lakes and the proportion
of clear lakes in China from 1985 to 2020. An evident inflection
point can be observed in 2001, with a significant downward
trend in SD before 2001 and a significant upward trend after.
Overall, the proportion of clear lake area exhibited a significant
increase from 1985 to 2020.

Figure 3-2 shows the spatiotemporal trends of SD of lakes in
the five limnetic regions (East Plain Region, Mengxin Plateau
Region, Qinghai-Tibet Plateau Region, Northeast Mountain-
Plain Region, and Yungui Plateau Region) from 1985 to 2020.
Since 1985, the SD of most lakes in China increased, and the
number of lakes with increased SD accounted for more than
77.0% in each limnetic region. The proportion of lakes with
better clarity was the highest in the East Plain Region (84.3%)

Outlook

This study developed a lake water clarity inversion model,
using remotely sensed data, at national and global scales.
Further, the spatial distribution trends and interannual changes
in water clarity of China's and the world's lakes were analyzed,
providing baseline data for monitoring and evaluating SDG 6.3
of improving global water quality.

Although there are satellite remote sensing capabilities for
monitoring and assessing lake water clarity in China and the

clarity data sets were produced for China's lakes larger than 1
km’, based on Landsat data from 1985 to 2020, and for large
lakes in the world bigger than 25 km? for 2010, 2015, and 2020,
based on MODIS data. Finally, the spatiotemporal changes in
lake clarity in China and the world were analyzed based on the
time-series data sets. Water bodies with Secchi disk depth greater
than 0.5 m are generally defined as clear water bodies (Stephens
etal., 2015).

and the lowest in the Mengxin Plateau Region (77.0%).

Figure 3-3 shows the average water clarity distribution of
large lakes in the world in the summer of 2020. Compared
with 2010, water clarity increased significantly in central Asia,
northern Europe, southeastern Africa, northern North America,
and central South America in 2015. Compared with 2015, an
overall increasing trend in the clarity of large lakes in the world
was observed in 2020, with eastern and western Asia, northern
Europe, central and eastern Africa, central North America, and
southeastern South America showing significant increases.
The water clarity of large lakes showed an upward trend with
fluctuations from 2010 to 2020, among which the water clarity
of 51.1% of the 1,257 large lakes in the world increased, most
remarkably in Africa.

world as demonstrated in this study, water clarity can reflect
only the turbidity of lake water, but not the overall water quality.
Future efforts are needed to explore means to monitor more
parameters for surface water quality to facilitate Indicator 6.3.2
and provide multi-scale water quality information to inform
environmental monitoring and management departments at
different levels.
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Trends in the average SD of lakes (a) and the proportion of clear lake area (b) in China
from 1985 to 2020
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Assessment of change in global crop water-use efficiency

Target: 6.4 By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply

of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity.

N

© A method was developed for the evaluation of global crop water-use efficiency based on multi-
source remotely sensed data and crop growth processes, and a global data set between 2001-
2019 was generated, providing an innovative method and data for monitoring and assessing
SDG 6.4.1 in spatially comparable agricultural areas in the world.

O In recent 20 years, crop water-use efficiency in agricultural areas in the world has increased,
mainly attributable to the increase in crop biomass thanks to technological progress, economic
and social development and a certain degree of climate change.

A ighli i
Highlights ~

Background

SDG 6.4.1 "change in water-use efficiency over time" is about
measuring national water-use in order to help address issues
that must be overcome before SDG 6.4 can be met. It involves
water-use efficiency in sectors ranging from agriculture to
industry to services. Among them, agriculture has high water
use and consumption (through evapotranspiration). Improving
agricultural water-use efficiency is important to promoting the
sustainable use and development of water resources.

A commonly used evaluation indicator of agricultural water-
use efficiency is crop Water Use Efficiency (WUE), which refers
to the biomass yield per unit of water and can reflect water-use

Data used

O Remotely sensed data: global data sets derived from
different satellite observations with various spatiotemporal
scales in 2001-2019 include albedo, NDVI, Leaf Area Index
(LAI), fractional vegetation cover, snow cover and Land Use
and Land Cover (LULC) from MODIS and Global Land
Surface Satellite (GLASS); dynamic water surface area from
Acrospace Information Research Institute, Chinese Academy
of Sciences; Global Precipitation Measurement (GPM)
precipitation; European Space Agency-Climate Change
Initiative (ESA-CCI) soil moisture and LULC; Fraction of
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efficiency from output. Crop water-use efficiency time series
estimated from Big Earth Data combined with models can
provide scientific support to the assessment of agricultural water-
use efficiency and its temporal changes. The spatiotemporal
coverage, timeliness and update frequency of such methods
and data sets are significantly better than evaluation methods
based on statistical data. Targeting the inadequacy of data for
evaluating agricultural water-use efficiency, this study developed
alternative indicators to evaluate the interannual change in crop
water-use efficiency in different regions of the world.

Absorbed Photosynthetically Active Radiation (FAPAR)
from Copernicus Global Land Service (CGLS); Shuttle
Radar Topography Mission (SRTM) DEM (2000).
O Meteorological forcing and other spatial data: ECMWF
ERAS forcing data in 2001-2019; soil texture data.

© Ground measurements of latent heat flux and CO, flux from
global flux tower network or Gross Primary Productivity (GPP)
observation data, used for calibration and validation.
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Method

Crop WUE is calculated as the ratio between crop Net
Primary Productivity (NPP) and crop water consumption (i.e.
evapotranspiration, ET). Method to estimate crop WUE using
the aforementioned data is summarized as follows: Firstly, the
ET was calculated by applying the ETMonitor model (Hu and
Jia, 2015; Zheng et al., 2019) to the corresponding multi-source
remotely sensed data and atmospheric reanalysis data ERAS.
ETMonitor distinguishes the energy partitioning and water
fluxes between soil evaporation and vegetation transpiration
upon theories of energy balance, water balance and plant
physiology of a soil-vegetation canopy system. Secondly, NPP
was estimated by the difference between GPP and respiration.
A model for the crop GPP based on light use efficiency (Field

Results and analysis

There were some spatial variations in the global trend of crop
water-use efficiency from 2001 to 2019. In Asia, America and
Oceania, crop water-use efficiency showed a consistent increase.
In Europe and Africa, the trend generally was upward, except

et al., 1995; Zwart et al., 2010) was modified in two aspects:
(1) soil water stress factors were introduced to improve the
estimation accuracy of GPP under drought conditions; (2) model
parameters were calibrated and optimized by using the GPP
obtained from the carbon flux data observed from the global
eddy-covariance flux tower stations. By comparing the GPP
observed by flux tower stations, it was found that the improved
light-use efficiency model significantly improved the estimation
accuracy of GPP. Thirdly, the estimated daily ET and annual
GPP of global crops were validated by comparing with ground
measurements. Finally, the time series of global NPP and ET
between 2001-2019 with 1 km resolution were generated for the
assessment of long-term change in crop water-use efficiency.

in a few countries and regions. China and Canada had the most
significant increases in crop water-use efficiency (Fig. 3-4).
Crop water-use efficiency has increased by 16.4% on average in
the past nearly 20 years. Among them, the water-use efficiency

(a) Trend of global crop water-use efficiency
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of rainfed and irrigated crops increased by about 16.0% and
20.2% respectively, with the latter remarkably higher than the
former (Fig. 3-5). The recent rate of improvement in crop water-
use efficiency was higher than the earlier period during 2001-
2019, and the turning point came earlier for irrigated crops than
for rainfed ones (as shown in Fig. 3-5b where positive anomaly
for the former comes before that of the latter). This is due to the
joint effect of the increase in crop biomass and the decrease in
water consumption caused by technological progress, economic

and social development and a certain degree of climate change.

Outlook

In this study, an evaluation method of crop water-use efficiency
was developed based on multi-source remotely sensed data
combined with crop growth process information. Based on
globally consistent and spatially comparable remotely sensed ET
and NPP data, the global crop water-use efficiency was estimated
and its interannual changes from 2001 to 2019 was extracted
and analyzed, instrumental in the accurate understanding of the
historical evolution and current state of global crop water-use

efficiency.

It should be noted that high NPP of crops does not mean
high grain yield. Agrometeorological disasters can result in

inconsistencies between the spatiotemporal dynamic changes

During the overall increase in crop water-use efficiency, there
was a clear decline in 2015, probably caused by the global
super El Nifio event (occurring between October 2014 and April
2016). The event, the strongest since the 20th century, had three
important attributes: long life cycle, high cumulative magnitude,
and high peak intensity. The regional droughts caused by it led to
a significant decrease in crop biomass (Li and Shi, 2016), which
then pushed down crop water-use efficiency through its strong
linkage with the interannual dynamic change in crop water-use
efficiency.

of crop water-use efficiency calculated on crop NPP and ET
and the crop water productivity calculated on grain yield and
ET. The factors affecting the transformation from crop NPP to
grain yield are complex, especially because the sensitivity to
agrometeorological disasters is different in various crop growth
stages. Given the present severe impact of agrometeorological
disasters, farmland management needs to be further improved so
as to raise the conversion rate from crop NPP or biomass to grain
yield (harvest index), which is necessary for the achievement
of a higher level of food security and water resource security in
2030.




The assessment of China's Integrated Water Resources Management

Target: 6.5 By 2030, implement integrated water resources management at all levels, including through transboundary

cooperation as appropriate.

- A Highlights / N

the global medium-high level.

© The method of assessment of the Integrated Water Resources Management (IWRM) was
improved, based on the questionnaire methodology recommended by the United Nations, and
supported by big data and spatial analytical technology. China's IWRM during 2015-2017
and 2018-2020 was assessed and analyzed, using China National Water Resources Monitoring
Capacity Building statistics and data from Water Resources Bulletin.

O China has made progress in improving the level of IWRM. In the 2020 United Nations Survey on
IWRM Implementation, China's final score rose to 79 points from 75 points in 2017, reaching

Background

Since the 1990s, Integrated Water Resources Management
(IWRM) has been globally accepted as an effective and
important method to realize sustainable development, utilization
and protection of water resources, and it has been included in
the United Nations Sustainable Development Goals (Global
Water Partnership Technical Advisory Committee, 2016). SDG
6.5.1 (Degree of Integrated Water Resources Management)
measures management policies, laws and regulations, measures,
tools, benefits, etc., based on data collected from questionnaire
statistics and results reported by the water resources
management departments of Member States. In the 2020 survey,
185 out of the 193 UN Member States reported data on their
implementation of IWRM (UNEP, 2020a).

In recent years, China has drawn on advanced concepts and
experience in the world in deepening IWRM, and gradually put

Data used

© Survey data, from 2015-2017 and 2018-2020 China Integrated

Water Resources Management Assessment Questionnaire.

© Data on Chinese provincial boundary cross-section water
volume and quality, data on water intake, drinking water and
water function zone, from 2015 to 2020, from China Statistical
Yearbook, and data from China National Water Resources
Monitoring Capacity Building and Water-use Statistics Direct

a0

in place a fairly sound water resources management system and
a corresponding administrative management mechanism with
China's characteristics. Supported by water conservancy science
and technology and growing fiscal input, China has successfully
improved its national water resources monitoring capacity. Water
security has been enhanced and water-use efficiency improved,

with growing water-saving awareness in society.

Following UNEP's Integrated Monitoring Guide for SDG 6
-- Step-by-Step Monitoring Methodology for Indicator 6.5.1
(UNEP, 2020b), this research used big data and spatial analysis
techniques to improve the assessment method for IWRM and
applied it to the evaluation and analysis of China's IWRM
degree from 2015-2017 and 2018-2020, arriving at an accurate
understanding of China's IWRM capacity.

Reporting System.
© Provincial-level statistical data from 2015 to 2020 on water
supply, water use, precipitation, sea entry, water quality (2015-
2018), reservoir and lake water storage, etc., from China Water
Resources Bulletin.



Method

Using the questionnaire survey methodology recommended
by the UNDP (UNEP, 2020a) and big data and spatial analysis
technology, a semi-quantitative assessment of the IWRM level in
China was made. The specific steps are as follows:

(1) Drawing reference from the IWRM indicators system, a
questionnaire was designed, including 33 questions organized
into eight groups under four sections — enabling environment,
institutions and participation, management instrument, and
financing; respondents were selected based on their representation
of sectors, regions, professions and levels, age, gender, etc.;
survey results were collected and comparatively analyzed, and
on-site meetings were organized for respondents to discuss the
results and the scoring criteria were further harmonized and
errors corrected.

Results and analysis

1. Improvement in China's IWRM capacity from 2015 to
2020

From 2015 to 2020, China's IWRM capacity had improved
significantly. During this period, the number of survey
stations reporting cross-section hydrological data at provincial
boundaries increased from 22 to 540; the number of monitored
water users increased from 6,569 to 18,383, a growth rate of
179.8%. In 2020, 348.3 billion m® of water intake and use was
monitored online, accounting for about 59% of total water use in
China.

(2) Data from China Water Resources Bulletin, Water-use
Statistics Direct Reporting System, and China National Water
Resources Monitoring Capacity Building were analyzed for the
change over time and in spatial distribution, and decomposition
of experts' scoring of water resources management instruments
into the provincial, basin and national levels, thus achieving
multi-leveled semi-quantitative results.

(3) Using the results of both the questionnaire survey and the
spatial analysis and review of management instruments, and
drawing reference from the UNEP classification standards, the
degree of IWNRM was categorized into six levels, including very
high, high, medium-high, medium-low, low, and very low (UNEP,
2020b). The scoring results were compared with the assessment
results of the reference period (2015-2017) to obtain China's
degree of IWRM implementation.

2. The degree of China's IWRM from 2018 to 2020

Benefit from IWRM improvement efforts since 2015 that
optimized the water resources management system and
administrative management mechanism and increased technical
and financial input, China's scores under "enabling environment"
and "institutions and participation" rose from both at 75 in
2017 to 82 points and 76 points respectively, and the scores
under "management instruments" and "financing" increased
from 76 points and 72 points in 2017 to 79 points and 80 points
respectively, and the final score increased from 75 points in 2017
to 79 in 2020 (Table 3-2).

Table 3-2. Comparison of China's IWRM Assessment Scores in 2020 and 2017

SDG 6.5.1 score = Degree of IWRM implementation (0-100) 2015-2017 2018-2020

1 Enabling environment

1.1 What is the status of policies, laws and plans to support IWRM at the national level?

1.2 What is the status of policies, laws and plans to support IWRM at other levels?

2 Institutions and participation

2.1 What is the status of institutions for INRM implementation at the national level?

2.2 What is the status of institutions for IWNRM implementation at other levels?

3 Management instruments

3.1 What is the status of management instruments to support IWRM implementation at the

national level?

3.2 What is the status of management instruments to support IWRM implementation at

other levels?

75.0 82.0
80.0 83.7
70.0 81.3
75.0 76.0
76.0 74.0
73.3 77.3
76.0 79.0
78.0 81.2
72.5 75.8
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4 Financing

4.1 What is the status of financing for water resources development and management at the

national level?

4.2 What is the status of financing for water resources development and management at

other levels?

SDG 6.5.1 score

The evaluation results show that China's all-encompassing water
resources management system has been effectively improved,
with constant efforts for digitalization and intelligent technology.
The system exercises real-time online monitoring of water

Outlook

By introducing big data and spatial analysis technology, this
research has improved the assessment method for "management
instruments" in the IWRM evaluation, and addressed the
differences in questionnaire respondents' understanding of the
standards due to their susceptibility to subjective perceptions and
experiences, making the assessment conclusions more objective,

accurate and consistent.

The assessment results put China at the global medium-high
level, but there is still a gap compared with some developed
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72.0 80.0
80.0 82.0
66.7 79.5
75.0 79.0

volume, level, flow and other factors, makes forecast or gives
early warning on maximum water use or ecological flow, and

inform decisions on risks avoidance and contingency plans.

countries. To close the gap, it is particularly necessary to
synchronize multiple measures to meaningfully engage a wider
range of stakeholders in IWRM. IWRM can be made part of the
14th Five-year Plan and Vision 2035 for Water Conservancy
Work. By drawing on the international evaluation system and
successful experiences, China can improve and upgrade its
standards, and modernize its water conservancy management

system and capacity.



Change in natural and artificial water bodies
in China from 2000 to 2020

Target: 6.6 By 2020, protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers

and lakes.

water.

-

© Based on the self-developed data set of monthly surface water in China from 2000 to 2020 with
a spatial resolution of 30 m, drawing reference from the manually labeled 45,591 samples of
artificial water bodies in China, the natural and artificial water bodies data sets in China in
2000, 2005, 2010, 2015, and 2020 were developed through the post-classification of surface

© From 2000 to 2020, there was an upward trend for the total area of natural and artificial water
bodies in China; among the 34 provincial-level administrative divisions in China, 44% saw
increase in natural water bodies, while 65% saw increase in artificial water bodies, and 56%
saw decrease in natural water bodies, while 35% saw increase in artificial water bodies.

A iahli i
Highlights ~

Background

In recent years, the rapid development of Big Earth Data
analysis technology has greatly promoted the measurement and
evaluation capacity of SDG 6.6.1. The Global Surface Water
data set (GSW) (Pekel et al., 2016) developed by the European
Commission's Joint Research Centre (JRC) has become an
important reference data set for the evaluation of national-
scale water surface changes (including rivers, lakes, reservoirs,
ponds, etc.) by the United Nations Statistics Division (UN-
Water, 2018). This data set, however, due to the inadequacy of
artificial water body sample data, cannot effectively distinguish
natural water bodies such as deltas and lakes from artificial
water bodies such as reservoirs and ponds, and therefore
cannot fully reflect the changes in the proportion of natural and
artificial water bodies (UN-Water, 2020b), thus limiting the

Data used

© China's monthly surface water data set with 30 m spatial
resolution from 2000 to 2020 derived from Landsat TM/ETM+/
OLI images.

© The 45,591 artificial water sample data labeled by the visual
interpretation based on GF-1/6, Sentinel-2 and Landsat TM/

degree and capacity of surface water resources management
at the national scale, and negatively influencing the objective
evaluation and understanding of the impact of the distribution
and area change of artificial water bodies on the health status
of surface water ecosystem.

Drawing reference from SDG 6.6.1 definition and change
assessment methods of natural and artificial water bodies, this
study classified natural and artificial water bodies in China
from 2000 to 2020 and developed data sets based on the self-
developed data set of surface water in China with a spatial
resolution of 30 m and evaluated the spatial distribution and
area changes of natural and artificial water bodies in China
from 2015 to 2020 against the benchmark of 2000 to 2005.

ETM+/OLI images in 2019 and 2020.

O Dam location data of 4,662 large-and-medium-sized
reservoirs provided by China Institute of Water Resources and

Hydropower Research.
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Method

Firstly, based on the self-developed China's monthly surface
water data set with 30 m spatial resolution from 2000 to 2020,
through the synthesis of monthly maximum, the national surface
water distribution data sets in 2000, 2005, 2010, 2015, and 2020
were generated. The calculation formula is as follows:

ASW = MAX {msw,;, mswy, ...... ymswi}(i=1,2,....,12)

ASW is the annual surface water data; msw; is the monthly
surface water data of the i™ month.

Secondly, the 45,591 artificial water body sample data labeled by
visual interpretation were used as input, and the spatial overlay
analysis was made with the surface water distribution data of each
year. The artificial water body sample points were used to select
the artificial water body regions, so as to obtain the preliminary
classification of artificial and natural water bodies. On this basis,

Results and analysis

1. Accuracy verification of natural and artificial water bodies
data

Six 5°x5° verification regions were selected nationwide (located
in Northeast, North, West, Northwest, South and East of China).
The accuracy of remote sensing extraction results of surface
water in the 12 months of 2019 was verified, using a total of
144,000 sample points (2,000 verification sample points were
randomly collected in each verification region every month,
including 1,000 water samples and 1,000 non-water samples).
The average Producer's Accuracy (PA) and User's Accuracy
(UA) of surface water extraction in the six verification regions
in 12 months were 0.950 and 0.998, and the average Overall
Accuracy (OA) and Kappa coefficient were 0.975 and 0.949. The
verification results indicated that the surface water data set used
in the study had very high accuracy and met the classification
requirements of natural and artificial water bodies.

Based on the location data of 4,662 reservoir dams in China, the
dam buffer zones were generated (by extending outward by 200
meters from the dam location points). The interchapter of the
buffer zone data and the national artificial water body data set in
2020 shows that 4,200 artificial water body polygons match the
reservoir dam buffer zones, accounting for 90.1% of all reservoir
dam sample points. It indicates that the artificial water body data
set can accurately reflect the actual distribution of artificial water
bodies throughout the country.

2. Changes in China's natural and artificial water bodies

From 2000 to 2020, the area of natural water bodies in China
had major fluctuations, but the trend was upward overall. The

area of artificial water bodies continued to increase, with the only
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the artificial water bodies (including cascade power stations and
reservoirs) were manually divided from the natural river channels

to obtain the final artificial and natural water bodies data set.

Drawing reference from SDG 6.6.1 calculation method and
taking the mean value of natural and artificial water bodies
data in 2000 and 2005 as the reference period data, the changes
in natural and artificial water bodies from 2015 to 2020 were
evaluated. The calculation formula is as follows:
P=(r-P)/F

P is the change percentage of natural or artificial water body area
in different regions; S is the average area of natural or artificial
water bodies in different regions in the period of 2000-2005; y is

the average area of natural or artificial water bodies in the period
0f2015-2020.
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/N Figure 3-6. Changes in China's natural and artificial water
bodies from 2000 to 2020

exception of a minor decline occurring in 2015 from 2010 due
to the drought in Northeast China (Fig. 3-6). In terms of spatial
distribution, natural water bodies were mainly located in the
Qinghai-Tibet Plateau, the Eastern Plain, and the Northeast Plain,
while artificial water bodies were mainly distributed in the middle
and lower reaches of the Yangtze River and coastal provinces (Fig.
3-7).

At the provincial level, compared with the data of the benchmark
period from 2000 to 2005, among the 34 provincial-level
administrative divisions in China, the area of natural water
bodies increased in 15, such as Guizhou, Anhui and Sichuan,
and decreased in 19, such as Macao, Beijing and Tianjin,
accounting for 44% and 56% of the total administrative divisions
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/N Figure 3-7. Spatial distribution of natural and artificial water bodies in China in 2020 and the changing trend of natural and
artificial water bodies in provincial administrative divisions from 2015 to 2020 compared with 2000 to 2005

respectively. The area of artificial water bodies increased in 22,
such as Yunnan, Guizhou and Hubei, and decreased in 12 such as

Outlook

This study statistically analyzed the spatiotemporal changes in
natural and artificial water bodies in China in recent 20 years,
based on natural and artificial water bodies data sets in 2000,
2005, 2010, 2015 and 2020. In general, both natural and artificial
water bodies exhibited an upward trend, and the increase in the
area of artificial water bodies was more significant.

The research results provide scientific data sets and analytical

Hebei, Shanghai and Anhui, accounting for 65% and 35% of the
total administrative divisions respectively (Fig. 3-7).

conclusions for the monitoring and evaluation of SDG 6.6 of
protecting and restoring water-related ecosystems in China and
can inform decision-making on China's IWRM. Future research
will adopt similar technical methods to develop natural and
artificial water bodies data sets and to evaluate their changes in
China's neighboring countries and also at the global scale.




Spatiotemporal changes in China's vegetated wetlands

Target: 6.6 By 2020, protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers

and lakes.
A Highlights i
e N
© Based on the Hybrid Object-based and Hierarchical Classification (HOHC) approach, spatial
distributions of China's vegetated wetlands in 2010, 2015 and 2020 were generated.
O A quantitative analysis was made on the effectiveness of China's wetland protection and
restoration policy, and found that from 2010 to 2020, there was a net decrease of 4.8% in the
area of vegetated wetlands in China and the rate of wetland loss during 2015 to 2020 was
significantly lower than in the period of 2010-2015.
- J
Background

Vegetated wetland, as in SDG 6.6.1, is a major type of wetland,
making up 83.5% of total natural wetland in the world. It
plays an important role in maintaining biodiversity, easing
global warming and preserving water sources. Since the 1950s,
vegetated wetlands in China have shrunk drastically in terms
of both area and spatial distribution under the dual pressure
of climate change and human activities. Analysis of change
in vegetated wetlands over time is an important basis for the
evaluation of national implementation of Target 6.6, and can
provide key data in support of China's implementation of the

Ramsar Convention on Wetlands.

Data used

© Landsat TM/ETM+/OLI images in 2010, 2015, and 2020 and
some ZY-3 images

© DEM, vector data of administrative divisions, 1:1,000,000
vegetation type map, climatic zones map, and global water

Method

Vegetated wetlands are transitional zones between terrestrial
and aquatic ecosystems. They have unique spectral and texture
characteristics on remotely sensed images. This study classified
vegetated wetlands at the national level through remote sensing
with a Hybrid Object-oriented and Hierarchical Classification
(HOHC) approach. The workflow included: first, collecting
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Based on Big Earth Data, including remotely sensed images,
ground survey samples and statistics, this study (1) proposed a
hybrid object-oriented and hierarchical classification (HOHC)
approach; (2) generated data sets of China's vegetated wetland
distributions in 2010, 2015 and 2020; (3) analyzed the spatial
and temporal changes in China's vegetated wetlands from
2010 to 2020. The results can provide a reliable research
methodology for Target 6.6, and offer data products that can be
used in direct support of Target 6.6 evaluation or as reference
for the evaluation of SDGs 13, 14 and 15. They can also inform
Chinese policies on wetland protection and restoration.

distribution maps

© Ground survey samples, governmental statistics, and

monitoring data

satellite images which covered various climatic zones with
different vegetated wetland types in different seasons; second,
segmenting remotely sensed images at multi-scale and classifying
with hierarchical decision tree method; third, validating
classification results against massive field survey samples (Jia
et al., 2018; Mao et al., 2019, 2020). When building image



collections, we selected (1) cloudless images from flood season
(generally July to September) for inland vegetated wetlands,
and (2) cloudless images from dry season and low tide period
(November to February in the southeast coast and July to
September in the north coast) for coastal vegetated wetlands.

Results and analysis

1. Areal extents and spatial distributions of China's vegetated
wetlands

Figure 3-8 shows the areal extents and spatial distributions of
China's vegetated wetlands in 2010, 2015, and 2020. The areal
extent was estimated to be 1.71x10° km®, 1.64x10° km’, and
1.63x10° km® in these three years. China's vegetated wetlands
were observed mainly in Heilongjiang, eastern Inner Mongolia,
Qinghai, Tibet, and Xinjiang, where they accounted for more
than 80% of the nation's total.

2. Spatiotemporal change in vegetated wetlands in China
from 2010 to 2020

Figure 3-9 shows changes in areal extent and spatial distribution
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Finally, data sets of China's vegetated wetlands in 2010, 2015,
and 2020 were obtained. The overall accuracy of classification,
as validated against over 5,000 ground survey samples, is above
92%.

of vegetated wetlands in China from 2010 to 2020. During this
period, China's vegetated wetlands exhibited a downward trend,
decreasing by 7,000 km®, or by 4.1% between 2010 and 2015,
and declining by 1,300 km’, or by 0.8% between 2015 and 2020.
Compared with the previous five years, the rate of vegetated
wetland loss significantly slowed down during 2015 and 2020.

There was a clear spatial heterogeneity in the changes of vegetated
wetlands in China from 2010 to 2015. In terms of provincial
spatial changes (Fig. 3-8), Tibet lost 3,000 km* of vegetated
wetlands, more than any other provinces which also saw a
decrease. In contrast, Xinjiang's vegetated wetlands increased by
4,000 km?, and a few other provinces also saw net gains.

B Vegetated wetland
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/M Figure 3-8. Spatial distributions of China's vegetated wetlands and changes among provinces in 2010, 2015 and 2020
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From 2015 to 2020, Inner Mongolia lost about 500 km* of
vegetated wetlands, more than any other provinces which also
saw a decrease. Zhejiang saw the largest net gain in vegetated
wetlands of 50 km’ among provinces with net gains.

From its accession to the Ramsar Convention in 1992 to the
submission of its first draft legislation on wetlands protection to
the Standing Committee of the National People's Congress in
2021, China has been exploring ways of protecting and restoring
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wetlands. By September 2020, China had 64 Ramsar sites and
put 50% of its wetlands under protection. A combination of
policies to reverse farmland and ponds to vegetated wetlands
and encourage natural rehabilitation has effectively increased the
areal extend of wetlands. This study revealed that the downward
trend for vegetated wetlands was clearly curbed between 2015
and 2020, compared to the period of 2010-2015.
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/N Figure 3-9. Changes in areal extend and spatial distribution of vegetated wetlands in China for periods 2010-2015 and 2015-2020

Outlook

This study developed a Big Earth Data-based, object-oriented
and HOHC approach to map vegetated wetlands in China. The
established data sets of China's vegetated wetlands in 2010,
2015 and 2020 are of high mapping accuracy and can provide
important scientific data for evaluating SDG 6.6 at the national
scale, or be used as reference data for the evaluation of SDG 13,
14 and 15.
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This study found that from 2010 to 2020, there was a trend of
net decrease in the area of vegetated wetlands in China, but
it had significantly slowed down since 2015, indicating the
effectiveness of wetland protection and restoration. The findings
can be used to support SDG 6 evaluation and inform decisions

on wetland conservation and management.



B CLEAN WATER
ANDSANITATION

o] Summary [

This chapter presents case study results on the monitoring and
evaluation of SDG 6.3, 6.4, 6.5, and 6.6 at national and global
scales based on Big Earth Data technology, including China's
lake water clarity data set, China's natural and artificial water
bodies data sets and China's vegetated wetland data sets, degree
of IWRM in China, state of water-related ecosystems and
environment in China and the world, and change in crop water-

use efficiency in the world. The main conclusions are as follows:

(1) Between 2010 and 2020, China's lakes larger than 1 km® and
the world's lakes larger than 25 km” became clearer.

(2) Global crop water-use efficiency exhibited an upward trend
from 2001 to 2019 due to technological progress and economic
and social development.

(3) China has made progress in the degree of IWRM, reaching
the global medium-high level by 2020.

(4) From 2000 to 2020, the area of natural and artificial water
bodies in China increased while the loss of vegetated wetlands

in China slowed down significantly between 2010 and 2020,
indicating effectiveness of China's wetland protection and
restoration policies.

The five cases in this chapter illustrate the potential of Big Earth
Data in monitoring and evaluating SDG 6 indicators such as
SDG 6.3.2 (proportion of bodies of water with good ambient
water quality), SDG 6.4.1 (change in water-use efficiency
over time), SDG 6.5.1 (degree of integrated water resources
management) and SDG 6.6.1 (change in the extent of water-
related ecosystems over time) at the national and global scales.
In the future, satellite remote sensing, model simulation,
statistical data, questionnaire survey and other data and tools
will be used together to monitor and evaluate more the SDG
6 indicators at the global, national, and provincial scales, with
a view to providing continued technological and information
support for SDG 6 implementation in China and around the
world.
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Over the past few decades, the world has been in rapid
urbanization. The urban areas, though covering less than
1% of the world's land, contribute 75% of the world's Gross
Domestic Product (GDP), consume 60-80% of energy and
generate 75% of global waste and carbon emissions (Elmqvist
et al., 2019; Jiang et al., 2021). Rapid urbanization has resulted
in the world's 4 billion urban population facing increasing
air pollution, insufficient infrastructure and public services,
and disorderly urban expansion (UN, 2020a). In particular,
the COVID-19 pandemic outbreak in early 2020 exposed
many urban vulnerabilities due to the lack of adequate and
affordable housing, inadequate public health systems, and
poor infrastructures (UN, 2021c). More than 90% COVID-19
cases have occurred in city areas, exacerbating the plight of the
world's 1 billion population living in informal densely populated
settlements and slums (UN, 2020a).

To address these challenges, the United Nations proposed SDG
11 "make cities and human settlements inclusive, safe, resilient
and sustainable" (UN, 2015a), a goal crucial to achieving all
the other Sustainable Development Goals (Acuto et al., 2018).
However, as of March 29, 2021, 10 out of the 15 SDG 11
indicators faced the lack of data for monitoring and evaluation
(IAEG-SDGS, 2021). To meet the challenges brought by
urbanization and the problems hindering the monitoring and

evaluation of SDG 11, 150 countries have developed national

urban plans, nearly half of which are being implemented,
helping cities to develop in a more sustainable and inclusive
manner. China's success in curbing the rapid spread of
COVID-19 pandemic shows that Chinese urban communities
have extraordinary flexibility and adaptability in adjusting to
new norms (Cheng et al., 2021). Only through data-driven urban
inclusiveness and sustainable urban development can cities
recover from the pandemic and respond better to future urban
disasters and urban public health events.

In the past two years, Big Earth Data was harnessed to support
the monitoring and evaluation of SDG 11, showcasing China's
achievements and contributions in three aspects: data products,
methods and models and decision support (Guo et al., 2021).
Consistent with the demonstration of methods and models and
regional and national evaluation in the 2019 and 2020 reports,
this chapter presents Big Earth Data-enabled monitoring and
evaluation of convenient access to public transport (SDG 11.2.1),
urban disasters (SDG 11.5.1/11.5.2) and open public space (SDG
11.7.1), and integrated SDG 11 indicators' evaluation at the
provincial and municipal levels in China. The case study results
in this chapter are a useful supplement to the Chinese dataset in
the Global SDG Indicators Database system for the objective
evaluation of China's implementation of SDG 11.



Cases in this chapter address such enormous challenges as
housing shortages, traffic congestion, the lack of basic urban
services and inadequate infrastructure that some cities face,
and offer Big Earth Data-enabled monitoring and evaluation

11.2.1 Proportion of
population that has
convenient access to

Proportion of the
population with

. TierII  convenient access to
public transport, by sex, . .
. public transportation in
age and persons with China
disabilities
11.5.1 Number of deaths,
missing persons and
directly affected persons
attributed to disasters per
100,000 population Interannual variation
11.5.2 Direct economic TierI/  of total loss of natural
loss in relation to global Tier I  disasters at prefectural
GDP, damage to critical level (2010-2020)
infrastructure and number
of disruptions to basic
services, attributed to
disasters
11.7.1 Average share
O.f .the bullF-up area of The patterns and
cities that is open space . .
. TierII  dynamics of urban green
for public use for all, by . .
: space in China
sex, age and persons with
disabilities
Community-scale urban
1111, 11.2.1, 11.3.1, Tl | LEmCReapes izl
11.7.1 Tier 11 change and sqsta'inable
development indicators
in major Chinese cities
) Integrated evaluation
Integrated evaluation of Tierl/  o£SDG 11 indicators in
SDG 11 TierII  Chinese cities from 2015

to 2020

experience to China and the world. Focusing on eight SDG 11
indicators, this chapter offers China's data products, methods and
models and decision support (Table 4-1).

Data product: Data sets of population with convenient access
to public transport, by age and gender, with 1 km resolution
(2015, 2018 and 2020)

Method: Extraction method of Chinese kilometer grid
population data by age and gender

Data product: Indicator data set of disaster-affected people
per 100,000 population, death and missing persons per
100,000 population and direct economic loss in relation to
GRP at prefectural-level by year (2010 - 2020)

Method: Standardized data set for Target 11.5, which
increases the spatiotemporal monitoring granularity of
indicators

Data product: Vector boundary of China's urban built-up area
and spatial component data product of urban green space with
30 m spatial resolution (2000, 2010 and 2020)

Method: Extraction method of spatial components of urban
green space

Data product: Community-scale landscape data and
landscape sample data of major cities in China (2015 and
2020)

Method: Scene modeling and extraction method of urban
landscape; Heuristic learning method for urban landscape
samples

Data product: Integrated multi-indictor evaluation data
set of China for SDG 11.2.1, 11.3.1, 11.5.1, 11.5.2, 11.6.1,
11.6.2 and 11.7.1

Decision support: Provide support for the sustainability
evaluation of Chinese cities at prefectural level and inform
integrated evaluation of other SDGs in China



11.2 By 2030, provide access to safe, affordable, accessible and sustainable transport systems for all, improving road

safety, notably by expanding public transport, with special attention to the needs of those in vulnerable situations, women,

children, persons with disabilities and older persons.

High-resolution gridded population distribution data by gender and age group for 2015, 2018
and 2020 were produced to address the lack of such data for SDG 11.2.1.

In 2020, the proportion of the population with convenient access to public transportation in
urban built-up areas was 90.15% in China, up by 9.59% over 2018. 96.90% of Chinese cities saw
higher proportions to varying degrees, while about 3% experienced slight declines.

Public transportation, an indispensable part of urban
transportation, is a key factor in promoting the development of
various industries, cultural prosperity, and connections between
urban and rural areas. Fair access to public transportation is
significant to cities' sustainable development. An immature,
unbalanced public transportation system would reduce the
accessibility of public facilities, or force residents to turn to
non-public means of transportation, thus hindering people's
mobility and standing in the way of a city's fair, sustainable,
and economically robust development. To address this issue,
the United Nations adopted the New Urban Agenda, calling
on cities around the world to develop sustainable and efficient
transportation infrastructure and services, focusing on the
transportation need of all, especially the poor and residents of
informal settlements.

© Public transportation network (e.g., bus and metro ne